An Improved Method for Classification of Epileptic EEG Signals based on Spectral Features using k-NN

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

Improved Graph Based K-NN Text Classification

This paper presents an improved graph based k-nn algorithm for text classification. Most of the organization are facing problem of large amount of unorganized data. Most of the existing text classification techniques are based on vector space model which ignores the structural information of the document which is the word order or the co-occurrences of the terms or words. In this paper we have ...

متن کامل

Emotional Telugu Speech Signals Classification Based on K-nn Classifier

Speech processing is the study of speech signals, and the methods used to process them. In application such as speech coding, speech synthesis, speech recognition and speaker recognition technology, speech processing is employed. In speech classification, the computation of prosody effects from speech signals plays a major role. In emotional speech signals pitch and frequency is a most importan...

متن کامل

Classification of Emotions from Eeg Using K-nn Classifier

This paper describes a method for automatic classification of different human emotions obtained using Electroencephalograph (EEG) signals. The human brain is a complex system. The superimposition of the diverse processes in the brain is recognized through EEG signals. Electroencephalographic measurements are commonly used in medical applications and in the research areas to study and analyse di...

متن کامل

Classification of EEG Signals for Discrimination of Two Imagined Words

In this study, a Brain-Computer Interface (BCI) in Silent-Talk application was implemented. The goal was an electroencephalograph (EEG) classifier for three different classes including two imagined words (Man and Red) and the silence. During the experiment, subjects were requested to silently repeat one of the two words or do nothing in a pre-selected random order. EEG signals were recorded by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Electronics and Communication Engineering

سال: 2015

ISSN: 2348-8549

DOI: 10.14445/23488549/ijece-v2i7p108